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Abstract
In the presence of spin–orbit coupling and inversion symmetry of the lateral confinement
potential a single electron does not exhibit matrix Berry phases in quasi-two-dimensional
semiconductor quantum dots. In such a system we investigate whether many-body correlation
effects can lead to finite matrix Berry phases. We find that the transformation properties of
many-electron wavefunctions under two-dimensional inversion operation do not allow finite
matrix Berry phases. This effect is exact and is independent of the form of electron–electron
interactions. On the other hand, quasi-two-dimensional semiconductor quantum dots with
lateral confinement potential without inversion symmetry can have finite matrix Berry phases.
We find that many-body quantum fluctuations can change matrix Berry phases significantly in
such systems.

1. Introduction

Electron spins in two-dimensional semiconductors may be ma-
nipulated electrically [1–9]. It is more challenging to con-
trol single or a few spins coherently in confined nanoquantum
dots [10–16]. One way to perform such a coherent control elec-
trically is based on matrix Berry phases [17–19]. There are
several semiconductor nanosystems with spin–orbit coupling
terms [20, 21] that exhibit matrix Berry phases: they include
excitons [22], CdSe nanocrystals [23], acceptor states of p-type
semiconductors [24] and ring spin filters [25]. Recently it has
been demonstrated theoretically that it is possible to control
electrically electron spins of II–VI and III–V n-type semicon-
ductor quantum dots [26] and rings [27] by exploiting matrix
Berry phases. In these systems spin–orbit terms are invariant
under time reversal operation [28] and the discrete energy lev-
els are doubly degenerate, and these properties are responsible
for the generation of matrix Berry phases [29]4.

3 Author to whom any correspondence should be addressed.
4 The relation between molecular Kramers degeneracy and non-Abelian phase
factors is investigated in [29].

Coherent manipulation can be achieved by changing
external parameters adiabatically in time. According to the
theory of the matrix Berry phase [18] the ground state of a
doubly degenerate Hilbert subspace of these II–VI and III–V
n-type semiconductor quantum dots changes adiabatically in
time as

�(t) = C1(t)�(t) + C2(t)�(t), (1)

where �(t) and �(t) are the instantaneous degenerate single-
electron or many-body eigenstates (the overbar in �(t)
means time reversal state of �(t)). The time-dependent
Schrödinger equation for the expansion coefficients C1 and C2

of equation (1) can be written as

ih̄Ċv = −
∑

w

AvwCw v = 1, 2, (2)

where Avw = h̄
∑

k(Ak)v,w
dλk
dt and λk are the adiabatic

parameters labeled by k. The time evolution of the ground
state is governed by the 2 × 2 non-Abelian vector potentials
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(NAVPs) between the degenerate eigenstates

(Ak)v,w = i〈�v| ∂

∂λk
|�w〉, (3)

where �1 = �(t) and �2 = �(t).
II–VI and III–V semiconductor quantum dots usually

contain several electrons and many-body effects may affect
the matrix Berry phase. Formal expressions for many-
body NAVPs can be derived including many-body exchange
and correlation effects [30]. Correlation effects are taken
into account by writing many-body eigenstates as a linear
combination of single Slater determinant wavefunctions.
When odd numbers of electrons are present the ground states
are doubly degenerate. At each time instant t they can be
written as linear combinations of Slater determinant states
|�i〉:

|�〉 =
M∑

i

ci |�i〉, |�〉 = T̂ � =
M∑

i

di |�i〉, (4)

where T̂ is the time reversal operator and M is the number
of instantaneous Slater determinant states in the linear
combinations. These states are time reversal states of each
other. (We have suppressed t in the quantities appearing in
equation (4), and from now on we will do so unless explicitly
written.) The diagonal elements of the NAVPs are

(Ak)1,1 = i〈�| ∂

∂λk
|�〉 = i

∑

i

c∗
i

∂ci

∂λk
+

∑

i, j

c∗
i c j(Bk)i, j , (5)

where the elements of the NAVP between Slater determinant
states are

(Bk)i, j = i〈�i | ∂

∂λk
|� j〉. (6)

(The Slater determinant states in this expression can have
different total confinement energies.) It can be shown that if
(Bk)i, j is non-zero one can find single-electron wavefunctions
φp and φq so that

(Bk)i, j = (ak)p,q = i〈φp| ∂

∂λk
|φq〉. (7)

When the single-electron eigenstates φp and φq belong to
different energy shells (ak)p,q are called single-electron inter-
shell NAVPs [30]. The other diagonal elements (Ak)2,2 are
given by equation (5) except that � is replaced by �. The off-
diagonal elements are

(Ak)1,2 = i〈�| ∂

∂λk
|�〉 = i

∑

i

c∗
i

∂di

∂λk
+

∑

i, j

c∗
i d j(Bk)i, j , (8)

with (Ak)2,1 = (Ak)
∗
1,2. Within this approach one

can use a Hartree–Fock approximation based on single
Slater determinant ground states, and show that fermion
antisymmetry does not change the value of the matrix Berry
phase.

These formal results have not been applied to investigate
the interplay between matrix Berry phase and many-body

correlations of II–VI and III–V semiconductor quantum dots.
For example, not much is known about how the effects beyond
the Hartree–Fock approximation, i.e. correlation effects,
change the matrix Berry phase. The total many-electron
Hamiltonian consists of four terms: the kinetic part HK,
confinement potential VC, spin–orbit terms Hso and electron–
electron interactions V :

H = HK + VC + Hso + V . (9)

Note that VC may or may not be invariant under two-
dimensional inversion operation. However, Hso is not invariant
under two-dimensional inversion operation and, consequently,
the total Hamiltonian H is not invariant under two-dimensional
inversion operation, irrespective of the invariance of VC. This
implies that eigenstates of the total Hamiltonian H are not
eigenstates of the two-dimensional inversion operator. In the
absence of many-body effects it can be shown that, when the
lateral electric confinement potential has inversion symmetry,
i.e. VC is invariant under two-dimensional inversion operation,
the matrix Berry phase is absent [26]. This is because
off-diagonal elements of single-electron intra-shell NAVPs,
equation (3), may vanish. However, in the many-electron
case the NAVPs may take finite values since they are related
to the single-electron inter-shell NAVPs, which can be non-
zero, as can be seen from equation (7). It is thus unclear
whether the matrix Berry phase remains zero or not. In
addition, it is not understood how many-body correlation
effects change quantitatively the matrix Berry phase when a
distortion potential breaks inversion symmetry of the lateral
electric confinement potential. Such a quantitative estimate
should be valuable in understanding experimental results of
matrix Berry phases.

In order to investigate these issues we use the formal
results of equations (4)–(8). We have investigated the
effect of many-body correlations and have found that they
do not induce a finite matrix Berry phase when the lateral
confinement potential is invariant under two-dimensional
inversion operation. This is an exact result. The main physics
is that, although there is coupling between different single-
electron energy levels, many-body correlation effects cancel
this coupling. On the other hand, for lateral confinement
potentials without inversion symmetry we find that many-body
quantum fluctuations change the matrix Berry phase. In this
case it is difficult to investigate exactly correlation effects. We
have treated them in an approximation that includes a finite
number M of many-body basis vectors, and have performed
a numerical computation to estimate the effect of quantum
fluctuations on the matrix Berry phase. Our approximate
calculation shows that the effect of quantum fluctuations on
the matrix Berry phase becomes more significant as the ratio
between the Coulomb strength and the single-electron energy
spacing increases. The main results of our investigation may
be tested experimentally in semiconductor dots, as we discuss
in section 4.

Our paper is organized as follows. In section 2 we
describe our model Hamiltonian. In section 3 we compute
the matrix Berry phase when the lateral confinement potential
is not invariant under two-dimensional inversion operation.
Discussions are given in section 4.
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2. Model Hamiltonian

The total single-electron Hamiltonian of a II–VI or III–
V n-type semiconductor quantum dot contains an electric
confinement potential and spin–orbit coupling terms. An
electron with the effective mass m∗ of such a system can be
described by the Hamiltonian [26]

hS = hK + hR,

hK = − h̄2∇2

2m∗ + U(�r) + V (z),

hR = cR
(
σx ky − σykx

)
,

(10)

where the two-dimensional lateral confinement potential is

U(�r) = 1
2 m∗ω2

x x2 + 1
2 m∗ω2

y y2 + Vp(x, y), (11)

and the vertical confinement potential is V (z) (here the two-
dimensional coordinate is �r = (x, y)). An electric field
E is applied along the z axis and electrons are confined in
a triangular potential V (z), and it is assumed that only the
lowest subband along the z axis is occupied. Thus in our
model quantum dots are effectively quasi-two-dimensional.
The Rashba constant cR changes when the electric field E
is varied. The potential Vp(�r) = ε ′y perturbs the two-
dimensional harmonic potential with the strengths ωx and ωy .
This potential can be realized by applying a constant electric
field along the y axis and its strength ε ′ is controlled by the
magnitude of the applied electric field along the y axis. The
crucial point about U(�r) and V (z) is that they can be changed
electrically, which provides a means to control coherently
electron spins. The Rashba spin–orbit term [20] is hR with
Pauli spin matrices σx,y and a momentum operator kx = 1

i
d

dx
(similarly with ky). The Dresselhaus term can also be included,
but since it does not change results qualitatively we omit it here.
The Hamiltonian, equation (10), represents a simple model of
the physical system, but it has all the correct symmetries. It is
invariant under time reversal operation and each eigenenergy
is doubly degenerate. The Hamiltonian is not invariant under
two-dimensional inversion operation �r → −�r since the Rashba
spin–orbit term breaks inversion symmetry. In order to build
up many-body wavefunctions we need to first construct single-
electron eigenstates. Each of these wavefunctions consists of
the spin-up and-down components:

|φ〉 =
(

F↑(�r)

F↓(�r)

)
=

( ∑
mn cmn↑〈�r |mn ↑〉∑

m′n′ cm′n′↓〈�r |m ′n′ ↓〉
)

, (12)

where |mn〉 are eigenstates of two-dimensional harmonic
oscillators.

3. Breaking of inversion symmetry, correlations and
matrix Berry phase

When the lateral potential has two-dimensional inversion
symmetry the effect of many-body correlations will not
produce a finite value of the matrix Berry phase. This can
be shown to be an exact result. (See appendix B.) It follows

from the transformation properties of the wavefunctions under
inversion operation. It should be stressed that, although the
lateral potential has inversion symmetry, the total Hamiltonian
does not. When the inversion symmetry of U(�r) is broken
many-body correlations will induce a finite value of the matrix
Berry phase. It is not possible to compute this effect exactly
unlike the case when U(�r) has inversion symmetry. In a
previous work a truncated single-electron 4 × 4 Hamiltonian
matrix was used [26]. However, many-body states built
from these approximate single-electron wavefunctions do not
adequately describe many-body correlation effects. In this
paper we find improved single-electron wavefunctions, and
use them to build many-body wavefunctions. Here we will
compute the degenerate ground states approximately by using
a finite number of Slater determinant basis states, i.e. using
M = 4 in equation (4). This approximation should be valid
as long as the single-electron energy spacing is larger than or
comparable to the characteristic Coulomb energy scale.

3.1. Single-electron Hamiltonian matrix

We employ an improved approximation of a 6 × 6 truncated
single-electron Hamiltonian matrix, whose eigenvectors can be
written, according to equation (12), as

|φ〉 ∼= c0,0,↑|00 ↑〉 + c0,1,↑|0, 1,↑〉 + c0,2,↑|0, 2,↑〉
+ c0,0,↓|0, 0,↓〉 + c0,1,↓|0, 1,↓〉 + c0,2,↓|0, 2,↓〉. (13)

These expansion coefficients cmnσ of the basis states |mnσ 〉 are
eigenvectors of the 6 × 6 Hamiltonian matrix

Hsingle

=

⎛

⎜⎜⎜⎜⎜⎜⎝

E0 EP 0 0 −iER 0
EP E1

√
2EP iER 0 −√

2iER

0
√

2EP E2 0
√

2iER 0
0 −iER 0 E0 EP 0

iER 0 −√
2iER EP E1

√
2EP

0
√

2iER 0 0
√

2EP E2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(14)

The basis vectors of this Hamiltonian matrix are ordered as
|00↑〉, |01↑〉, |02↑〉, etc. To reduce the number of independent
external parameters we can set the ratio between the harmonic
frequencies to be a constant, for example, ωx = 3ωy . Then
the energies of the two-dimensional harmonic oscillators are
E0 = 2h̄ωy , E1 = 3h̄ωy and E2 = 4h̄ωy . The eigenvalues of
this matrix are

X1 = 3

2
E0 − 1

3
ε cos

(
θ

3

)
,

X2 = 3

2
E0 + 1

6
ε

(
cos

(
θ

3

)
− √

3 sin

(
θ

3

))
,

X3 = 3

2
E0 + 1

6
ε

(
cos

(
θ

3

)
+ √

3 sin

(
θ

3

))
,

(15)

3
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where

ε = √
3
√

E2
0 + 12δ, δ = E2

P + E2
R,

A = −18E0
(
E2

P + E2
R

)
,

B = 1
6

√
108

(
E2

0 + 12δ
)3 − 11664E2

0δ
2,

cos θ = A√
A2 + B2

, sin θ = B√
A2 + B2

.

(16)

Because of time reversal symmetry each eigenenergy is
doubly degenerate. The doubly degenerate wavefunctions
of the energy shells with eigenenergies X1, X2 and X3

are denoted by (φ1, φ2), (φ3, φ4) and (φ5, φ6), respectively.
There is some arbitrariness in choosing these eigenstates
since new eigenstates may be obtained by applying unitary
transformations to the old set in each degenerate energy
shell [18]. We choose the expansion coefficients of the
first, second and third pairs of degenerate eigenstates of
equation (14) as

�c(1) = 1√
N1

(α1, β1, γ1, δ1, 0, 1) ,

�c(2) = 1√
N1

(−δ∗
1 , 0,−1, α∗

1 , β
∗
1 , γ ∗

1

)
,

(17)

�c(3) = 1√
N2

(α2, β2, γ2, δ2, 0, 1) ,

�c(4) = 1√
N2

(−δ∗
2 , 0,−1, α∗

2 , β
∗
2 , γ ∗

2

)
,

(18)

and

�c(5) = 1√
N3

(α3, β3, γ3, δ3, 0, 1) ,

�c(6) = 1√
N3

(−δ∗
3 , 0,−1, α∗

3 , β∗
3 , γ ∗

3

)
.

(19)

Here �c(p) denotes the expansion coefficients {cmnσ (p)} of
the pth eigenstate. The quantities αp, βp, γp and δp are
too complicated and lengthy to give here: however, they are
all purely real or imaginary. This choice of the eigenstates
simplifies the calculation of the many-body NAVPs. When
U(�r) has inversion symmetry, i.e. EP = 0, then αi and γi

are zero.

3.2. Many-body Hamiltonian matrix

Using the previous results for single-electron wavefunctions
we construct many-body ground states. Let us assume there
are three electrons in the dot. In order to calculate the
many-electron NAVPs we need to compute the expansion
coefficients ci and di of equation (4). We include three single-
electron energy shells, each with double degeneracy. In our
approximation we truncate the number of Slater determinant
wavefunctions to four with the lowest total confinement

energies. They are

|�1〉 = a+
3 a+

2 a+
1 |0〉,

|�1〉 = a+
4 a+

2 a+
1 |0〉 = |�2〉,

|�3〉 = a+
5 a+

2 a+
1 |0〉,

|�3〉 = a+
6 a+

2 a+
1 |0〉 = |�4〉,

(20)

where a+
i creates an electron in the i th single-electron

eigenstate |φi〉, given in equations (17)–(19). The vacuum state
is |0〉. The truncated many-body Hamiltonian matrix is

H =

⎛
⎜⎜⎝

EA 0 a b
0 EA −b∗ a∗
a∗ −b EB 0
b∗ a 0 EB

⎞
⎟⎟⎠ , (21)

where the matrix elements are

〈�1|H |�1〉 = EA,

〈�3|H |�3〉 = EB,

〈�1|V |�3〉 = a,

〈�1|V |�4〉 = b,

〈�1|V |�2〉 = 0

〈�3|V |�4〉 = 0.

(22)

The matrix elements a and b contain Hartree and exchange
contributions. All the quantities EA, EB, a and b change
when the adiabatic parameters change because they depend
on the single-electron wavefunctions, equations (17)–(19), that
are functions of the adiabatic parameters. The ground-state
eigenenergy is doubly degenerate with the value

EG = 1
2

(
EA + EB − D

1
2

)
, (23)

where
D = (EA − EB)2 + 4(|a|2 + |b|2). (24)

One of the doubly degenerate ground states has the expansion
coefficients

(c1, c2, c3, c4) = 1√
N1

(−bK ,−a∗K , 0, 1
)
, (25)

where

K = (−EA + EB + D
1
2 )

2
(|a|2 + |b|2) . (26)

The other degenerate state is obtained by taking time reversal
of this state

(d1, d2, d3, d4) = 1√
N1

(
aK ,−b∗K ,−1, 0

)
. (27)

Since cmnσ (p) of equations (17)–(19) are purely real or
imaginary it follows from the expression for the Coulomb
matrix elements, equation (C.1), that a is real and b is
imaginary. Then from equation (26) we also see that K is

4
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real. This implies that the expansion coefficients ci and di are
always purely real or imaginary.

When inversion symmetry is present in U(�r) the results
given in equations (25) and (27) simplify since b = 0, which
follows from

b = 〈�1|H |�4〉 = 〈13|v|16〉 − 〈13|v|16〉
+ 〈23|v|26〉 − 〈23|v|62〉 = 0, (28)

where v is the Coulomb interactions between two electrons.
(This is because, as can be seen from equations (A.4)–(A.6),
φ3(r)∗φ6(r), φ1(r)∗φ6(r) and φ3(r)∗φ2(r) are odd functions
of r ). In this case the expansion coefficients of the doubly
degenerate many-body ground states are given by

(c1, c2, c3, c4) = 1√
N1

(0,−aK , 0, 1) (29)

and

(d1, d2, d3, d4) = 1√
N1

(aK , 0,−1, 0) . (30)

Note that c∗
2d3 may not be zero, but (Bk)2,3 = (ak)4,5 = 0 from

equation (A.8).

3.3. Correlation and matrix Berry phase

We are now ready to calculate the matrix Berry phase. The
strengths of the distortion potential and Rashba constant are

EP = ε ′�y/
√

2 and ER = cR/
√

2�y . (31)

We choose these parameters as the adiabatic parameters: λ1 =
EP and λ2 = ER. (The single-electron Hamiltonian depends
on them, see equation (14). As explained in section 2 these
parameters can be controlled electrically.) The adiabatic path
is elliptic:

(λ1(t), λ2(t)) = (ER(t), EP(t))

= (ER,c + �ER cos(ωt), EP,c + �EP sin(ωt)). (32)

We use the parameters ER,c = 0.5E0, EP,c = 0.3E0, �ER =
0.35E0, �EP = 0.21E0 and ω = E0/10. The following steps
are implemented consecutively in computing the matrix Berry
phase:

(a) Single-electron eigenvectors are evaluated numerically
from equations (17)–(19).

(b) Coulomb matrix elements are computed using equa-
tions (C.2).

(c) Many-electron eigenvectors are evaluated from equa-
tions (25) and (27).

(d) The many-electron NAVPs, given by equations (5) and (8),
are evaluated on the various points on the closed adiabatic
path in the parameter space. For this purpose the
expansion coefficients di are differentiated numerically.
Also we use that the diagonal elements of the NAVPs
between Slater determinants, equation (6), are zero:

(Bk)i,i =
∑

p∈occ.

(ak)p,p = 0, (33)

where the sum over p indicates a sum over single-electron
states that appear in the Slater determinant state |�i〉. This

Figure 1. f (t) as a function of t/T for κ = 0.01, 0.2, 0.6, 1.

follows from the fact that cmn(p) is always purely real
or imaginary, see equations (17)–(19). Thus (ak)p,p =
i
2

d
dλk

[∑mn c∗
mn(p)cmn(p)] = 0 for each p. (Note that

the harmonic oscillator states |mn〉 do not depend on
λk .) In addition it follows from the orthonormalization
〈�i |� j〉 = δi j and equation (6) that

(Bk)i, j = (Bk)
∗
j,i for i �= j. (34)

Using these results we find that the NAVPs, equations (5)
and (8), are off-diagonal:

A1 =
(

0 P
P 0

)
, A2 =

(
0 Q
Q 0

)
(35)

with P, Q real. The time-dependent Schrödinger equation for
the expansion coefficients C1 and C2, given by equation (2),
can then be written as

dC1

dt
= i f (t)C2,

dC2

dt
= i f (t)C1, (36)

where the function

f (t) = P
dλ1

dt
+ Q

dλ2

dt
. (37)

For each point (λ1(t), λ2(t)) on the adiabatic path the off-
diagonal elements of the NAVPs are evaluated numerically, as
described in steps (a), (b), (c) and (d) above. As the strength
of the Coulomb interaction κ = e2

ε�y
/E0 increases f (t) varies

more significantly, see figure 1. The calculated matrix Berry
phase for κ � 1 is given as follows5:

(
C1(T )

C2(T )

)
=

(
cos χ i sin χ

i sin χ cos χ

) (
C1(0)

C2(0)

)
, (38)

where T is the period of the adiabatic cycle. The parameter
χ = ∫ T

0 f (t)dt of equation (38) is shown in figure 2. For
κ > 1 Slater determinant states with higher total confinement
energies than those four we have used need to be included in
the many-body basis set. This also implies that single-electron
states with higher energies than those six we have used must
be included.
5 Our matrix Berry phase is parameterized by a single parameter χ for the
special choice of basis vectors given in equations (17)–(19).

5
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Figure 2. The dependence of χ on κ , where χ characterizes the
2 × 2 matrix Berry phase and κ is the ratio between the Coulomb
energy scale and single-electron level spacing. κ measures the
strength of quantum fluctuations.

As a check on the correctness of our numerical procedures
we have verified numerically that the value of cos(χ) is
independent of the choice of the set of degenerate ground
states. (Although the elements of the matrix Berry phase
depend on the choice of the basis states the trace of it is
independent of the basis states.) By taking the limit of
the vanishing strength of Coulomb interaction κ → 0 in
equations (25) and (27) we see that the degenerate ground
states are (c1, c2, c3, c4) = (α, β, 0, 0) and (d1, d2, d3, d4) =
(−β∗, α∗, 0, 0). (This limit is somewhat delicate since N1

and K diverge.) We can also use another possible set for
degenerate ground states: (c1, c2, c3, c4) = (1, 0, 0, 0) and
(d1, d2, d3, d4) = (0, 1, 0, 0). The elements of the NAVPs with
respect to these new degenerate ground states are ( Ãk)11 =
(B̃k)11 = 0, ( Ãk)12 = (B̃k)12 = (ak)34. However, we find that
the value of cos(χ) is the same in these different sets of ground
states.

Using the computed matrix Berry phase, equation (38),
we now evaluate the single-electron occupation numbers,
which can be measured in tunneling experiments. Combining
equations (1) and (4) we find that the many-body ground state
at each time instant is given by

|�〉 = C1

∑

i

ci |�i〉 + C2

∑

i

di |�i〉. (39)

The probabilities that a single-electron eigenstate p is occupied
at t = 0 and T are, respectively

f p(0) =
∑

i

|(C1(0)ci(0) + C2(0)di(0))|2θi p

f p(T ) =
∑

i

|(C1(T )ci(0) + C2(T )di(0))|2θi p,
(40)

where f p = 〈�|a+
p ap|�〉, ci(T ) = ci (0) and di(T ) = di(0)

(ci and di are given in equations (25) and (27)). If the single-
electron eigenstate p is occupied (unoccupied) in the Slater
determinant state |�i〉 we define θi p = 1(0). At κ = 1 we
find for the occupation number of the third single-electron level
f3(0) = 0.0266 and f3(T ) = 0.4494. For the fourth single-
electron level we find f4(0) = 0.9492 and f4(T ) = 0.5264.

The difference between f p(0) and f p(T ) reflects the presence
of a matrix Berry phase. It would be interesting to measure
these differences in the single-electron occupation numbers
before and after an adiabatic cycle.

4. Discussions

The Hamiltonian of II–VI and III–V n-type semiconductor
quantum dots with spin–orbit terms are not invariant under
two-dimensional inversion operators. Despite this, whether
the lateral confinement potential is or is not invariant has
important consequences on the matrix Berry phase. Our
investigation shows that many-body correlation effects do not
generate a matrix Berry phase when the confinement potential
is invariant under two-dimensional parity operation. This is
an exact result. It holds despite that the inter-shell single-
electron NAVPs couple different single-electron energy levels.
However, when the confinement potential is not invariant under
parity operation our approximate calculation indicates that
correlations can affect the matrix Berry phase significantly.

Our results can be tested experimentally in self-assembled
dots with wetting layers [31, 32] or in gated n-type
semiconductor dots [33]. These quantum dots have several
attractive features: the lateral shape of the dot can be distorted
electrically to induce breaking of two-dimensional inversion
symmetry. Moreover, the electron number can be varied
from one to several electrons. These electric means for
control provide excellent opportunities to test systematically
the effect of many-body correlations. We have investigated
quantitatively how quantum fluctuations affect the matrix
Berry phase when the strength of Coulomb interaction is
smaller or comparable to the single-electron level spacing.
In self-assembled dots the characteristic scale of the single-
electron level spacing is 10–40 meV, which is larger than or
comparable to the Coulomb energy scale of 10 meV. However,
in gated semiconductor quantum dots [33] the characteristic
scale of the single-electron level spacing is a few meV, which
is smaller than the Coulomb energy scale. In order to
obtain accurate results for these dots one needs to include a
large number of Slater determinant basis states and single-
electron states. Nonetheless, even for these systems the matrix
Berry phase should be absent when two-dimensional inversion
symmetry is present, which should be experimentally testable.
It should be noted that the matrix Berry phase depends on the
geometric properties of an adiabatic path [34].
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Appendix A. Single-electron states and lateral
inversion symmetry

When the lateral confinement potential U(�r) has inversion
symmetry the single-electron eigenstates simplify. For a given
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Figure A.1. Each degenerate pair of eigenstates consists of A and B
types. These two types of eigenstates are time-reversed states of each
other. As the subscript i in φi increases the transformation properties
of φi alternate between A and B types.

twofold degenerate energy shell we choose [30] one of the
eigenstates as

|φ〉 =
(

Fo(�r)

Fe(�r)

)
, or |φ〉 =

(
Fe(�r)

Fo(�r)

)
, (A.1)

where Fe(�r) and Fo(�r) are even and odd functions of �r .
Although |φ〉 has even and odd spinor components it is not
an eigenstate of the parity operator since the Hamiltonian is
not invariant under two-dimensional inversion operation due to
the Rashba term. (Note that any linear combination of the two
states of equation (A.1) can also be chosen as a single-electron
basis state in the degenerate Hilbert subspace.)

We define a single- or many-electron wavefunction to have
a A-type property under parity operation if the spin-up part
changes sign under parity operation:

(
Fo(�r)

Fe(�r)

)
→

( −F∗
o (�r)

F∗
e (�r)

)
⇒ A-type. (A.2)

A wavefunction has a B-type property under parity operation
if the spin-down part changes sign under parity operation:

(
Fe(�r)

Fo(�r)

)
→

(
F∗

e (�r)

−F∗
o (�r)

)
⇒ B-type. (A.3)

Each eigenstate |φp〉 can be labeled by a subscript p. When p
is odd the spin-up and-down components of the wavefunction
are, respectively, odd and even functions of �r . When p is even
the odd and even properties are reversed.

In order to include many-electron physics we need to fix
single-electron eigenstates of not only the first shell, but also
of the second, third, etc, energy shells. Here we choose them
in the following specific order:

|φ1〉 =
(

F1,o(�r)

F1,e(�r)

)
, |φ2〉 =

( −F∗
1,e(�r)

F∗
1,o(�r)

)
, (A.4)

|φ3〉 =
(

F3,o(�r)

F3,e(�r)

)
, |φ4〉 =

( −F∗
3,e(�r)

F∗
3,o(�r)

)
, (A.5)

|φ5〉 =
(

F5,o(�r)

F5,e(�r)

)
, |φ6〉 =

( −F∗
5,e(�r)

F∗
5,o(�r)

)
, (A.6)

etc.

Figure A.2. A B-type Slater determinant is a sum of N ! terms. One
of these terms is shown.

Note that the wavefunctions of a degenerate pair are chosen
to be time-reversed states of each other. We have chosen
the single-electron wavefunctions φ1, φ3, . . . to have A-type
property, and φ2, φ4, . . . to have B-type property under parity
operation, as shown in figure A.1. This particular choice
simplifies the calculation of matrix Berry phases in the
presence of many-body correlation effects. This corresponds
to fixing a convenient ‘gauge’, i.e. a single-electron basis set.

The many-electron NAVPs contain single-electron NAVPs
via equations (6) and (7). So we need to understand first
the properties of single-electron NAVPs. We can choose
the adiabatic parameters as λ1 = 2h̄ωx and λ2 = cR√

2�y
,

where the lengths are �x,y = √
h̄/m∗ωx,y . (The single-

electron Hamiltonian depends on them, see equation (10).) The
adiabatic constant λ1 may be varied using the gate potential
of the dot and λ2 may be varied by changing the electric
field E along the z axis. The single-electron intra-shell
NAVP elements [18] are i〈φp| ∂

∂λk
|φ p〉, where φp and φ p are

degenerate single-electron eigenstates. The NAVP elements
between A and B or B and A states can be shown to be
zero [30]. Since φp and φ p are either of A and B or of B and
A the intra-shell NAVP elements are zero. On the other hand,
from the transformation properties of the eigenstates, given in
equations (A.4)–(A.6), we can show that the single-electron
inter-shell NAVP elements are

(ak)p,q �= 0 if p + q even, (A.7)

and
(ak)p,q = 0 if p + q odd, (A.8)

where φp and φq belong to different energy shells. Note that
different single-electron eigenstates can be coupled through
(ak)p,q if p + q is even. Thus the off-diagonal many-electron
NAVPs, equation (8), can be written in terms of non-zero inter-
shell single-electron NAVPs. Nonetheless it is possible to show
that the many-electron matrix Berry phase vanishes.

Appendix B. Absence of matrix Berry phase and
lateral inversion symmetry

Many-electron states can be written as a linear combination
of Slater determinant states |�i〉. In the following we will
choose |�1〉, |�3〉, . . . as A-type Slater determinant states
and |�2〉 = T̂ |�1〉, |�4〉 = T̂ |�3〉, . . . as B-type Slater

7
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determinant states. The time-reversed state of A-type single-
electron wavefunctions are of B-type, and vice versa. The
Slater determinant states |�i〉 are chosen in the order of
increasing confinement energy 〈�i |HK + VC|�i〉. The total
number of electrons N = NA + NB is odd with the number
of A-type single-electron wavefunctions NA and of B-type
NB. As explained in figure A.2, if NB is odd the Slater
determinant transforms like a B-type, i.e. the spin-down part
of the wavefunction changes sign. On the other hand, if NA

is odd |�i〉 transforms like an A-type, i.e. the spin-up part of
the wavefunction changes sign. It can be shown that the NAVP
between A and B Slater determinant states is zero:

(Bk)i, j = i〈�i (A)| ∂

∂λk
|� j(B)〉 = 0. (B.1)

This is because NAVPs between A and B single-electron states
are zero.

We find that a correlated degenerate ground state, |�〉 or
|�〉, is either A or B type. This is because the many-body
Hamiltonian matrix element between A-type and B-type Slater
determinant wavefunctions is zero, 〈�i (A)|H |� j(B)〉 = 0: if
|�〉 is A type and |�〉 is B type then

|�〉 = c1|�1(A)〉 + c3|�3(A)〉 + · · ·
|�〉 = d2|�2(B)〉 + d4|�4(B)〉 + · · · .

(B.2)

We see from these results that, for a given index i , if an
expansion coefficient ci of one degenerate ground state is zero
then the expansion coefficient di of the other time-reversed
ground state is non-zero, and vice versa.

The off-diagonal elements of the many-body NAVPs,
equation (8), are zero. This can be shown as follows: according
to equation (B.2), for each i , we have ci = 0 or di = 0, which
implies that the first term of equation (8) is

∑
i c∗

i
∂di
∂λk

= 0.
From equation (B.2) we see that, when i �= j and c∗

i d j is
non-zero, then �i and � j are of A and B types, respectively.
But this implies (Bk)i, j = 0 and the product c∗

i d j(Bk)i, j = 0.
The second term of equation (8) is thus

∑
i, j c∗

i d j(Bk)i, j = 0.
An explicit example of this is given below equation (30).
There is thus a delicate interplay between the many-body
expansion coefficients c∗

i d j and the elements of the NAVPs
between Slater determinant states (Bk)i, j . Since c∗

i
∂di
∂λk

= 0 and
c∗

i d j(Bk)i, j = 0 the off-diagonal elements of the many-body
NAVPs are zero: (Ak)1,2 = 0. The matrix Berry phase is thus
absent for doubly degenerate correlated states when inversion
symmetry is present. This is true at any level of approximation
represented by the number of Slater determinant states, M ,
included in equation (4). Therefore, this is an exact result valid
for M → ∞.

Appendix C. Coulomb matrix elements

The diagonal and off-diagonal matrix elements of H ,
equation (21), depend on two-particle Coulomb matrix
elements between single-electron eigenstates p, q, r, s that are

given in equations (17)–(19):

〈pq|v|rs〉 =
∑

m p, mq, mr , ms,

n p, nq, nr , ns ,

σp, σq , σr , σs

δσpσr δσqσs c
∗
m pn p

(p)

× c∗
mq nq

(q)cmr nr (r)cms ns (s)〈m pn p, mqnq |v|mr nr , msns〉
(C.1)

where the Coulomb matrix elements between eigenstates of
two-dimensional harmonic oscillators are

〈m pn p, mqnq |v|mr nr , msns〉
= e2

∫
d2k

1

2πk
〈m p|eikx x1 |mr 〉〈n p|eiky y1 |nr 〉

× 〈mq |e−ikx x2 |ms〉〈nq |e−iky y2 |ns〉 (C.2)

with

〈m|eikx x |m ′〉

=
⎧
⎨

⎩
(m′ !

m! )
1/2( ikx lx√

2
)m−m′

e− k2
x l2x
4 Lm−m′

m′ (
k2

x l2
x

2 ) (m ′ � m)

( m!
m′! )

1/2(− ikx lx√
2

)m′−me− k2
x l2x
4 Lm′−m

m (
k2

x l2
x

2 ) (m � m ′)
(C.3)

and Laguerre polynomials Lm′
m (x). A similar expression can be

found for 〈n|eiky y|n′〉 with �y replacing �x .
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